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Consider the Fredholm integral equation

wt) =10+ [ ke Dur Db,  0<t<x,

where the kernel £ has the form

M
k(t,») = Z‘ g@n(y), 0O0<ty.

A Cauchy problem equivalent to the original integral equation is derived and
validated. A general Fortran program has been written, and numerical results
are displayed. Emphasis is on the inhomogeneous problem, though some
remarks about the eigenvalue problem are given.

I. INTRODUCTION

The theory of invariant imbedding can be applied to Fredholm integral
equations with various types of kernels, [/]-[5]. By regarding the solution at a
fixed point as a function of the interval of integration, a differential equation
is obtained; this equation, combined with knowledge of the solution for one
interval length, enables us to produce the solution for other lengths. Such an
initial-value problem is suitable for numerical computation.

In this paper we derive and validate an initial-value method for an integral
equation whose kernel is degenerate. Computational results are given. The
Fortran program is available from the authors.

Consider the Fredholm integral equation [6], [7]

u(t, ) =f (O + [ k@, Du(y,x)dy,  0<t<x, )
where the kernel £ has the form
KLp)= 3 gOh(),  0<ty. @
In the customary manner it is seen that
) =10+ [ 3 e®h»un ) . ®

By introducing the M new functions of x, ¢,(x), ..., cy(x), according to the
relationships

@)= [ThOuG,dy,  i=1,2,.., M, @
24 355
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Eq. (3) becomes

M
w6 =/ 0+ > a)g). ()
By substituting from Eq. (5) into Eq. (4) we see that
X M
o= [ W00+ 5 aenn)|a. ©
Define the functions a; and b, fori, m =1, 2, ..., M by means of the relations
a(x) = [ () f )y, (7)
and
b = [T W) gD dy. (®)

Then Eq. (6) may be rewritten as the linear algebraic system

() =a@+ 3 buen®,  O<xi=L2. LM )

II. DERIVATION

It is now expedient to adopt vector-matrix notation. Let a be the M-dimen-
sional column vector whose ith component is ,(x). The M-dimensional
column vector ¢ has as its ith component ¢,(x), and B is the square matrix
of order M whose ith row and jth column is b,,(x). Equations (9) can now
be written

¢—=a-+ Be. (10)

Also introduce the M-dimensional resolvent matrix R whose ith row and
Jjth column is r;;(x), in terms of which the solution of Eq. (10) is

c=a+ Ra. (11)

For x sufficiently small such a matrix certainly exists. It is seen that the matrices
B and R are connected by the relation

R=B+ BR. (12)
Differentiate both sides of Eq. (10) with respect to x to obtain

¢'=a + B'c+ Bc'. (13)
Primes indicate differentiation with respect to x. In view of Eq. (11) it is seen

that Eq. (13) can be solved for ¢’ in the form
¢'=(a"+ B'c)+ R(@ + B'c), (14)

or

¢’ =(I+R)y(@ + B'c). (15)
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This is an ordinary differential equation for the vector ¢; ¢’ and B” are functions
of the independent variable x. Next, a differential equation for the resolvent
matrix R is obtained. Differentiation of both sides of Eq. (12) yields

R =B'+B'R+ BR. (16)
Again using Eq. (11) it is seen that
R'=(B'+ B'R)+ R(B" + B'R), a7
or
R =(I+ R)(B'+ B'R). (18)

This is the desired Riccati equation for the matrix R.
From their definitions it is known that a, B, and ¢ fulfill the initial conditions

a(0) =0, 19)

B(0)=0, (20)
and

¢(0)=0. @21
Furthermore, for R we have

R(0) =0. (22)

The initial-value problem for the vector ¢ and the matrix R is contained
in Egs. (15), (18), (21), and (22). It consists of M2+ M ordinary differential
equations with known initial conditions. The solution of the Fredholm
integral Eq. (1) is then provided by Eq. (5) for 0 < f < x and for x < x,, where
0 < x < x, is an interval on which the initial-value problem has a solution.

III. VALIDATION

It is easy to show that if ¢ is a solution of Eq. (10), then

10+ 3 6 8@ -0+ [ K610+ 5 amam]|or 0

and Eq. (5) provides a solution of the integral Eq. (1). It remains to demonstrate
that the solution of the initial-value problem does indeed satisfy Eq. (10).
First, introduce the M-dimensional matrix G by means of the relation

G =B+ BR. 24)
Differentiation shows that
G'=B’'+ B'R+ BR’
=B"+B'R+B(I+R)(B'+B'R)
=+ B+ BR)(B’' +B'R)
=(I+G)(B' + B'R). 25
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The initial condition on G is
G(0) =0.
Standard theorems show that

G:Rg 0<x<x1,
or
R=B-+ BR, O<x<x,.

Then introduce the vector w to be

w=a+ Be.
Differentiation yields
w =a' + B’c+ Bc'
=a +B'c+B{U+ R)(@a + B'c)
=+ B+ BR)(a'+ B'c).
According to Eq. (28), this becomes
w =+ R)(a' + B'c).

Since
w(0) =0,
we have
w=c¢
and

c=a+ Be, O0<x<x.

This completes the demonstration.

IV. DIFFERENTIAL EQUATIONS FOR THE COMPONENTS OF ¢ AND R

According to Egs. (7), (8), and (15), we have

¢ = % (815 +11p) (hj S+ % h; g Cn)
Jj=1 n=1

M M M
~hf@+ 3 hgaent 5 (1 S0+ 3 hgc)

bl + S erca) +76) S by + 3 ncu S i

The final result is

/)= {70+ 3 e en) [0 + 5, rne) ),

with
© =0, i=1,2,..., M.

(26)

@7

(28)

29)

(30)

(3D
(32)
(33)

(34

(35)

(36)

(37
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For the function ry; it follows from Eq. (18) that

M M
r;J(x) = Zl (Sim + rim) (hmgj + Zl hmgn rnj)
m= n=
M M M M
=higj+ Z kignrnj+ Z rimhmgj+ E &ntnj Z rimhm
n=| m=1 n=1 m=1

M M M
=h, {gj + zl &n rnj: + {gj + 21 &n rnj} Zl 7 im M- (38)
n= n= m=

The differential equations for the components of the resolvent matrix R are

) = {20+ £ 8] (1) + §, rn hat)].

Lj=12,.., M. 39)
The initial conditions are

ri0=0, ij=1,2,.., M. (40)

The solution of the Fredholm integral, Eq. (1), is then provided by Eq. (5)
for 0 < x < x;.

The computational procedure is to numerically integrate the system of
M? + M differential Egs. (36) and (39) with the initial conditions of Egs. (37)
and (40) until x attains the desired interval length. Then Eq. (5) is used to
produce u(t, x).

V. COMPUTATIONAL RESULTS

A Fortran program has been written to solve the initial-value problem
described in the previous section and, hence, the integral equation Eq. (1).
It employs subroutines written by J. Buell for an Adams—Moulton integration
scheme with a Runge-Kutta start. The results of four numerical experiments
are described in this section. A typical run on an IBM 7044 requires less than
30 seconds to execute.

First consider Eq. (1) with

kt,y)=e"e?, 41)
f@)=1 42)
The closed-form solution is
u(t,x) =1+ c(x)e, O<t<x, (43)
where
c(x) = (2 —2e™)/(1 + &%), 0<x <o, (44)

The results of the initial-value calculations using a step size of .0025 for x =1
and x =2, as well as the exact solution, are displayed in Table 1.
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TABLE 1

NUMERICAL RESULTS FOR THE KERNEL ¢~
a. Interval length x = 1.0

u(t,x) u(t, x)

t Initial-value method Exact
0 2.1135387 2.1135399
0.1 2.0075715 2.0075726
0.2 1.9116883 1.9116894
0.3 1.8249297 1.8249306
0.4 1.7464273 1.7464281
0.5 1.6753953 1.6753961
0.6 1.6111230 1.6111237
0.7 1.5529669 1.5529675
0.8 1.5003452 1.5003457
0.9 1.4527310 1.4527315
1.0 1.4096480 1.4096484

b. Interval length x = 2.0

u(t, x) u(t,x)

t Initial-value method Exact
0 2.6982213 2.6982254
0.2 2.3903860 2.3903893
04 2.1383518 2.1383545
0.6 1.9320036 1.9320058
0.8 1.7630600 1.7630618
1.0 1.6247407 1.6247422
1.2 1.5114944 1.5114956
14 1.4187762 1.4187772
1.6 1.3428650 1.3428658
1.8 1.2807141 1.2807148
20 1.2298293 1.2298298

In the second example the kernel is
k(t, y) ,:etey, (45)

and the forcing function is unchanged. This differs from the first example in
that now ¢(x) becomes infinite for a finite value of x. This value of x is the
positive root of the equation

l~f: e?dy =0, (46)
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which is
Xerie = .34930615. 7

The calculation was performed for two interval lengths, x = .95x;, with step
size of .00031 and x = .99x,,;, with step size of .00016. The exact solution is

ut)=1+c(x)e, O<t<x, (48)
e(x) = (2e* — 2)/(3 — &%), 0<X < Xepqe (49)

Results are shown in Table II.

Tasre II

NUMERICAL RESULTS FOR THE KERNEL e*+¥
a. Interval length x = 0.52184

u(t, x) u(t,x)
t Initial-value method Exact
0 9.5563613 9.5549738
0.05218408 10.014723 10.013261
0.10436817 10.497638 10.496098
0.15655225 11.006424 11.004801
0.20873634 11.542465 11.540755
0.26092042 12.107221 12.105420
0.31310450 12.702231 12.700334
0.36528859 13.329116 13.327116
0.41747268 13.989582 13987476
0.46965677 14.685430 14.683211
0.52184084 15.418554 15.416216

b. Interval length x = 0.54381

u(t,x) ut, x)

t Initial-value method Exact
0 44.578135 44.583903
0.05438131 47.013592 47.019683
0.10876262 49.585161 49.591592
0.16314393 52.300446 52.307237
0.21752523 55.167482 55.174652
0.27190654 58.194748 58.202318
0.32628785 61,391199 61.399193
0.38066917 64.766291 64.774731
0.43505047 68.330006 68.338919
0.48943177 72.092887 72.102299

0.54381308 76.066066 76.076003
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In the third example the integral equation is
u(t)=e‘—t+f:) 11— e u(y)dy, O<t<l, (50)

an equation with a nondegenerate kernel. This is to be solved by approximating
the kernel by the polynomial

(1)? +(~ty_)_‘_‘] .

KM(Z‘,y)=-—t[Zy+7+... M

for M =2, 3, and 4. The exact solution is
ut)=1, 0<r<l;

and the results of the computations using the initial-value method with step
size of .005 are displayed in Table III. They show that the approximation
improves as M increases from 2 to 4, but the results for M =2 are quite
accurate in themselves.

TaBLE 111

RESULTS FOR THE THIRD EXAMPLE

u(t,x) u(t,x) u(t,x)
t M=2 M=3 M=4
0 1.0000000 1.0000000 1.0000000
0.1 99993922 99998941 .99999848
02 .99979839 99995811 99999374
0.3 99972437 99991608 99998606
0.4 99998641 99989542 99997808
0.5 1.0009889 99996302 99997751
0.6 1.0032858 1.0002349 1.0000014
0.7 1.0075960 1.0008919 1.0000820
0.8 1.0148211 1.0021971 1.0002739
0.9 1.0260644 1.0045148 1.0006632
1.0 1.0426519 1.0083320 1.0013792

The fourth example shows that eigenvalues or critical lengths may be
obtained. The kernel is considered to be

k(t, y) =Ae, (52)
and

f=0. (53)
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Then for various values of A the differential equations for r and ¢ are integrated
with step size .005 until 7’ becomes sufficiently large. The exact relation is

2 (54)

= ercm -1

A

The results are shown graphically in the figure. Nonlinear extrapolation
techniques are capable of producing extremely accurate results. Details will
be given subsequently.
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